

 Islands Board

 v0.1.35

 Table of contents

 	
 Modules

 	Islands.Board

 	Islands.Board.Response

Islands.Board

A board struct and functions for the Game of Islands.
The board struct contains the fields islands and misses representing the
characteristics of a board in the Game of Islands.
Based on the book Functional Web Development by Lance Halvorsen.

 Summary

 Types

 islands()

 A map assigning islands to their island types

 t()

 A board struct for the Game of Islands

 Functions

 all_islands_positioned?(board)

 Checks if all islands have been positioned on board.

 forested_types(board)

 Returns a list of island types for forested islands.

 grid_positions(board)

 Returns a map assigning the CSS grid position of each island
on board to its island type.

 guess(board, guess)

 Checks if guess hit any island on board and returns a response tuple.

 hit_cells(board)

 Returns a map assigning the list of hits "cells" of each island
on board to its island type.

 hits(board)

 Returns the board's total number of hits.

 miss_squares(board)

 Returns a map assigning to :squares the list of square numbers
from the board's misses.

 misses(board)

 Returns the board's total number of misses.

 new()

 Returns an empty board struct.

 position_island(board, island)

 Positions island on board and returns an updated board or
{:error, reason} if island overlaps another board's island.

 Types

 islands()

 @type islands() :: %{required(Islands.Island.type()) => Islands.Island.t()}

A map assigning islands to their island types

 t()

 @type t() :: %Islands.Board{islands: islands(), misses: Islands.Island.coords()}

A board struct for the Game of Islands

 Functions

 all_islands_positioned?(board)

 @spec all_islands_positioned?(t()) :: boolean()

Checks if all islands have been positioned on board.

 forested_types(board)

 @spec forested_types(t()) :: [Islands.Island.type()]

Returns a list of island types for forested islands.

 grid_positions(board)

 @spec grid_positions(t()) :: %{
 required(Islands.Island.type()) => Islands.Island.grid_position()
}

Returns a map assigning the CSS grid position of each island
on board to its island type.

 guess(board, guess)

 @spec guess(t(), Islands.Coord.t()) :: Islands.Board.Response.t()

Checks if guess hit any island on board and returns a response tuple.

 hit_cells(board)

 @spec hit_cells(t()) :: %{
 required(Islands.Island.type()) => [Islands.Island.grid_cell()]
}

Returns a map assigning the list of hits "cells" of each island
on board to its island type.

 hits(board)

 @spec hits(t()) :: non_neg_integer()

Returns the board's total number of hits.

 miss_squares(board)

 @spec miss_squares(t()) :: %{squares: [Islands.Coord.square()]}

Returns a map assigning to :squares the list of square numbers
from the board's misses.

 misses(board)

 @spec misses(t()) :: non_neg_integer()

Returns the board's total number of misses.

 new()

 @spec new() :: t()

Returns an empty board struct.

 position_island(board, island)

 @spec position_island(t(), Islands.Island.t()) :: t() | {:error, atom()}

Positions island on board and returns an updated board or
{:error, reason} if island overlaps another board's island.

Islands.Board.Response

A 4-element tuple reflecting the effect of a guess (hit or miss) on a board.

 Summary

 Types

 guess_check()

 Preliminary response to a guess

 t()

 Full response to a guess

 Functions

 check_guess(board, guess)

 Checks if guess hit any island on board.

 format_response(guess_check, board)

 Converts a preliminary response to a guess into a full response.

 Types

 guess_check()

 @type guess_check() :: {:hit, Islands.Island.t()} | {:miss, Islands.Coord.t()}

Preliminary response to a guess

 t()

 @type t() ::
 {:hit | :miss, Islands.Island.type() | :none, :no_win | :win,
 Islands.Board.t()}

Full response to a guess

 Functions

 check_guess(board, guess)

 @spec check_guess(Islands.Board.t(), Islands.Coord.t()) :: guess_check()

Checks if guess hit any island on board.
Returns {:hit, hit_island}, where hit_island is the island hit by guess
once updated, or {:miss, guess} if guess was a miss.

 format_response(guess_check, board)

 @spec format_response(guess_check(), Islands.Board.t()) :: t()

Converts a preliminary response to a guess into a full response.

 OEBPS/dist/epub-4WIP524F.js
(()=>{var s=document.querySelector.bind(document),o=document.querySelectorAll.bind(document);function r(e){document.readyState!=="loading"?e():document.addEventListener("DOMContentLoaded",e)}var l="hll";window.addEventListener("exdoc:loaded",t);function t(){o("[data-group-id]").forEach(e=>{e.addEventListener("mouseenter",i),e.addEventListener("mouseleave",i)})}function i(e){let n=e.currentTarget,a=e.type==="mouseenter",c=n.getAttribute("data-group-id");n.parentElement.querySelectorAll(`[data-group-id="${c}"]`).forEach(u=>{u.classList.toggle(l,a)})}r(()=>{t()});})();

